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Abstract. Developing countries face a growing demand for video ana-
lytics, yet often lack sufficient computational resources. This paper ad-
dresses this challenge by proposing and evaluating optimization tech-
niques for efficient video stream processing on resource-constrained de-
vices, including edge systems. We introduce and evaluate several tech-
niques, including image resizing, frame skipping, parallel processing, thread-
ing, queue management, memory optimization, and buffering. Experi-
mental results demonstrate substantial improvements in frames per sec-
ond (FPS) and memory usage, enabling real-time video analytics without
compromising accuracy. By effectively balancing performance and re-
source consumption, our methods facilitate the deployment of advanced
AI-driven video analysis in resource-limited environments, paving the
way for practical real-time monitoring and alert systems.

Keywords: RSTP stream · Real-time Video Analytics · Computational
Optimization · Post-Training Optimization

1 Introduction

Real-time object detection and tracking demand exceptionally low processing
and transmission latencies to be effective. These systems are critical in various
applications requiring immediate alerts, such as surveillance, access control, and
anomaly detection. For instance, in sensitive areas, unauthorized intrusions must
be detected and reported instantly. Retail environments rely on rapid theft de-
tection to prevent losses, while traffic monitoring systems necessitate real-time
accident alerts for efficient emergency response.

Developing regions often face significant limitations in computational re-
sources, hindering the deployment of advanced video analytics systems. These
systems typically demand substantial processing power, making them imprac-
tical in environments with constrained infrastructure and budgets. To bridge
this gap, our research focuses on developing optimization strategies that enable
efficient video analytics on resource-limited platforms.

https://citadel.bf/
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We introduce in this study a suite of optimization techniques to accelerate
the processing and delivery of RTSP video streams while maintaining low la-
tency. By employing image resizing, frame skipping, MSE-based frame skipping,
parallel processing, threading, queue management, memory optimization, and
buffering, we aim to optimize real-time video analytics for resource-constrained
environments. Our findings demonstrate substantial improvements in process-
ing efficiency, enabling the reliable operation of real-time monitoring and alert
systems in such settings. These results highlight the feasibility of deploying ad-
vanced video analytics solutions that can function reliably in developing regions.

2 Related Work

Object detection techniques are a key area of artificial intelligence, with popu-
lar algorithms such as You Only Look Once (YOLO) and its improved versions
(YOLOv2 to YOLOv10). These algorithms are noted for their speed and accu-
racy, processing images in a single pass to provide the positions and categories
of detected objects [6]. Successive versions of YOLO have brought improvements
in batch normalization, the use of high-resolution images, and multi-scale train-
ing [2]. Other detection methods include Convolutional Neural Networks (CNNs)
used in models like SSD (Single Shot MultiBox Detector) and Faster R-CNN,
which balance processing speed and accuracy. For instance, SSD achieves an
average precision of 74.3% mAP on the VOC2007 test at a speed of 59 FPS,
surpassing Faster R-CNN and YOLO in terms of both speed and accuracy [5].

Recent research has explored distributed real-time video analytics using op-
timized YOLOv8 models on CPU nodes. This approach utilizes cloud platforms
like Microsoft Azure and data streaming tools such as Apache Kafka to effi-
ciently manage and process video streams [3]. OpenVINO [4] is used for both
pre-training and post-training optimization, enhancing model efficiency by con-
verting the YOLOv8 model into an IR format with FP32 precision, followed by
post-training quantization to create an INT8 version of the model. This tech-
nique enhances processing speed while maintaining accuracy.

In [7] authors show that the magnitude pruning reduces computational com-
plexity by removing low-magnitude weights from the network, followed by fine-
tuning to recover performance. Results indicate that the optimal pruning rate
for balancing performance and accuracy is around 0.5. This approach also allows
a reduction in parameters and computations while maintaining good detection
accuracy.

Optimized models allow for more efficient use of memory and processing re-
sources, which is essential for resource-constrained devices like CPU edge nodes.
Faster and more efficient models enable real-time detection and instant alerting,
which is critical for surveillance and security applications [1]. The increasing
demand for video storage and the complexities associated with processing large
volumes of video data require robust and scalable solutions. Tools like Apache
Kafka and Microsoft Azure Cloud play a crucial role in managing and processing
real-time video in a distributed manner [4].
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In addition to algorithm-specific detection techniques, it is essential to con-
sider post-processing strategies that can be applied independently of the specific
detection algorithm used. These strategies include image resizing, frame skip-
ping, and the use of parallel processing and threading to manage real-time video
streams. Efficient queue management for processed frames and memory opti-
mization with tools like tracemalloc are also crucial for maintaining high perfor-
mance and low latency. This article proposes and evaluates these post-processing
strategies, demonstrating their effectiveness in optimizing object detection sys-
tems, regardless of the specific detection algorithm [8].

3 Proposed approaches

3.1 Image Resizing

Image resizing is a fundamental optimization technique used to enhance the per-
formance of real-time video analytics systems, especially in resource-constrained
environments. By reducing the resolution of video frames, the computational
load on the processing system is significantly decreased, enabling faster pro-
cessing speeds and lower memory usage. This section details the image resizing
technique, its implementation, and its impact on the computational efficiency of
object detection and tracking systems.

Interpolation methods reduce the number of pixels while preserving as much
visual information as possible. The common interpolation methods include:

– Nearest Neighbor Interpolation: Selects the nearest pixel value to the target
pixel. It is the simplest and fastest method but may result in blocky images.

– Bilinear Interpolation: This method takes the average of the four nearest
pixel values to compute the target pixel value. It produces smoother images
than nearest neighbor interpolation.

– Bicubic Interpolation: This method considers the nearest sixteen pixels and
produces even smoother images. It is more computationally intensive than
the previous methods but provides better visual quality.

3.2 Frame Skipping

Frame skipping is an optimization technique designed to reduce the computa-
tional load of real-time video analytics systems by processing only a subset of
the frames in a video stream. This method can significantly enhance processing
speed and reduce memory usage, making it an effective strategy for resource-
constrained environments.

Frame skipping selectively processes frames at regular intervals, skipping a
predefined number of frames between each processed frame. The interval at
which frames are processed is referred to as the skip rate (sk). For example, a
skip rate of 2 means that every second frame is processed, while a skip rate of 5
means that every fifth frame is processed. The primary parameters involved in
frame skipping are:
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– Skip Rate: The number of frames to skip between each processed frame.
Higher skip rates result in fewer processed frames, leading to faster process-
ing times but potentially missing some critical information.

– Resolution: The resolution of the frames being processed, which can further
influence the computational load.

3.3 MSE-based Frame Skipping

MSE-based frame skipping calculates the Mean Squared Error between con-
secutive frames. If the MSE value exceeds a predefined threshold, the frame
is processed; otherwise, it is skipped. This method analyzes only frames with
substantial differences, optimizing computational resource usage.

The primary parameters involved in MSE-based frame skipping are:

– Skip Rate (sk): The interval at which frames are checked for processing
based on the MSE value. MSE Threshold (th): The threshold value above
which frames are processed. Lower thresholds result in more frames being
processed, while higher thresholds lead to more frames being skipped.

Other techniques besides MSE can be used for frame skipping, each with its
advantages and limitations. Some notable methods include:

– Structural Similarity Index (SSIM): This technique compares the structural
similarity between frames. SSIM is more sensitive to changes in structure,
luminance, and contrast, making it suitable for applications where visual
quality is paramount.

– Histogram Difference: This method calculates the difference in color his-
tograms between frames. It is computationally less intensive than MSE and
can quickly detect changes in the overall color distribution of frames.

– Optical Flow: This technique estimates the motion between frames by cal-
culating the flow of pixels. Optical flow is effective for detecting motion and
can be used to skip frames with minimal motion, thereby focusing processing
on dynamic scenes.

MSE =
1

n

n∑
i=1

(I1(i)− I2(i))
2 (1)

Where I1 and I2 are two consecutive frames, and n is the number of pixels.

3.4 Parallel Processing with ThreadPoolExecutor

Parallel processing with ThreadPoolExecutor creates a pool of threads to execute
tasks concurrently. Each frame of the video stream is treated as a separate task,
which can be processed in parallel by the threads in the pool. By distributing
the computational load across multiple threads, parallel processing reduces pro-
cessing time and increases efficiency. For instance, the ThreadPoolExecutor from



Real-time video analytics process optimization 5

the concurrent.futures library in Python provides a flexible and efficient way to
implement parallel processing. The following steps outline the implementation
strategy:

– Initialize the ThreadPoolExecutor: Create a ThreadPoolExecutor with a
specified number of worker threads.

– Submit Tasks to the Executor: Submit the frame processing tasks to the
executor.

– Process Frames Concurrently: Each worker thread processes a frame concur-
rently.

– Retrieve and Display Results: Collect the processed frames and display them.

Tp =
Ts

N
(2)

Where Tp is the parallel processing time, Ts is the sequential processing time,
and N is the number of threads.

3.5 Threading for Concurrent Video Stream Processing

Threading involves creating multiple threads within a single process, allowing
different tasks to be executed concurrently. In the context of real-time video
stream processing, threading can be used to handle multiple video streams si-
multaneously or to parallelize the processing of frames within a single stream.
The primary techniques used in threading include:

– Thread Creation: Initializing and managing threads for concurrent execu-
tion.

– Synchronization: Coordinating the execution of threads to prevent race con-
ditions and ensure data integrity.

– Queue Management: Using queues to buffer frames and manage the flow of
data between threads.

– Thread Pooling: Utilizing a pool of reusable threads to handle tasks effi-
ciently.

Tt =
Ts

N
+Overhead (3)

Where Tt is the threading processing time, Ts is the sequential processing
time, N is the number of threads, and Overhead is the additional time due to
context switching and synchronization.

3.6 Queue Management for Processed Frames

Queue management involves using data structures called queues to temporarily
store frames as they move through the different stages of processing. Queues help
to manage the flow of frames between the frame capture stage, the processing
stage, and the display stage. The key components of the queue management
approach include:
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– Frame Queue: Buffers frames captured from the video stream before they
are processed.

– Processed Queue: Buffers frames after they have been processed and before
they are displayed.

– Max Queue Size: Defines the maximum number of frames that can be stored
in the queue at any given time, preventing memory overflow and ensuring
smooth processing.

By using queues to buffer frames and manage the flow of data between vari-
ous stages of processing, queue management ensures efficient handling of video
streams and reduces latency.

Queue Size = min(Max Size, Input Rate× Processing Time) (4)

Where InputRate is the rate at which frames are added to the queue and
ProcessingT ime is the time taken to process each frame.

3.7 Memory Management with tracemalloc

Memory management is the process of efficiently allocating, utilizing, and free-
ing memory resources within a computer system. It ensures that applications
have sufficient memory to execute while optimizing the overall performance and
stability of the system. Effective memory management involves tracking mem-
ory usage, preventing memory leaks, and ensuring that memory is allocated and
deallocated in a way that maximizes system efficiency and prevents resource ex-
haustion. This is critical in environments with limited computational resources,
as it helps maintain optimal performance and avoid system crashes or slowdowns.
The Python library tracemalloc designed to trace memory allocations. It pro-
vides detailed information about memory usage, including the size and location
of allocated memory blocks. An effective memory management ensures that the
system can handle large volumes of video data without running out of mem-
ory or experiencing significant performance degradation. The implementation of
memory management with tracemalloc involves the following steps:

– Initialize tracemalloc: Start tracing memory allocations at the beginning of
the program.

– Track Memory Usage: Monitor memory usage during the execution of the
program.

– Analyze Memory Usage: Retrieve and analyze memory statistics to identify
memory usage patterns and potential issues.

– Stop tracemalloc: Stop tracing memory allocations and clean up resources.

Memory Usage =

n∑
i=1

Memory Block Sizei (5)

Where n is the number of memory blocks allocated.
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3.8 Optimization Through Buffering

Buffering is the process of temporarily storing data in a memory buffer while it is
being transferred between two locations, typically to accommodate differences in
data processing rates between the source and destination. In the context of real-
time video analytics, buffering helps to manage the flow of video frames, ensuring
smooth and efficient processing by mitigating the impact of fluctuations in data
processing speeds. Buffering plays a crucial role in maintaining a consistent data
stream, reducing latency, and preventing bottlenecks in the processing pipeline.

The implementation of buffering in real-time video analytics involves creating
queues that act as buffers for incoming and outgoing frames. The queue.Queue
class in Python provides a thread-safe FIFO (First In, First Out) queue, which
is ideal for this purpose. The key techniques in buffering include:

– Input Buffering: Temporarily storing incoming video frames before they are
processed. This helps to accommodate variations in frame capture rates and
ensures a steady supply of frames to the processing pipeline.

– Output Buffering: Storing processed frames before they are displayed or
transmitted. This helps to handle variations in processing time and ensures
smooth playback or transmission.

– Buffer Size Management: Adjusting the size of the buffers to balance memory
usage and processing efficiency. Larger buffers can handle more variation in
processing times but require more memory.

Buffer Size = Input Rate× Buffer Time (6)

4 Experimental setup and Discussion

In this section, we detail the experimental setup used to evaluate the perfor-
mance of various optimization strategies for real-time video analytics systems.
The primary goal is to assess the impact of each strategy on processing speed
(FPS), memory usage, and overall system efficiency. The strategies evaluated
include image resizing, frame skipping, MSE-based frame skipping, parallel pro-
cessing, threading, queue management, memory management with tracemalloc,
and buffering. We provide the source code for replication, accessible from our
GitHub repository.

4.1 Hardware and system configuration

The experiments were conducted using a Dahua IR DOME NETWORK CAM-
ERA with a wired connection (RJ-45) for video input. To facilitate easy replica-
tion, the reported results were obtained using a free online video from Pexels3.

3 https://www.pexels.com/video/dancers-performing-a-choreography-on-a-
promenade-14691550/

https://github.com/rdius/afrcomm24/tree/main
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Additionally, the yolov8n.pt4 model from Ultralytics was employed for object
detection, using the default classes and parameters (such as confidence, etc.)
provided by the model.

The PC used for the experiment has the following system configuration is as
follows:

– Operating System: Linux #35 22.04.1-Ubuntu SMP PREEMPT DYNAMIC
Tue May 7 09:00:52 UTC 2 (Release: 6.5.0-35-generic)

– Processor: x86 64
– Number of Cores: 8
– Max CPU Frequency: 4700.0 MHz
– Total Memory: 15.34 GB
– GPU Info: GPUtil not installed

4.2 Results and Discussion

Table 1 below summarizes the performance metrics for each optimization strat-
egy applied in our real-time video analytics system. The strategies include image
resizing, frame skipping, MSE-based frame skipping, parallel processing, thread-
ing, queue management, memory management with tracemalloc, and buffering.
For each strategy, we present the skip rate, resolution, maximum queue size,
number of frames processed, total processing time, frames per second (FPS),
current memory usage, and peak memory usage. These results highlight the ef-
fectiveness of each optimization technique in enhancing processing speed and
efficiency, particularly in a resource-constrained environment. Figure 1 and Fig-
ure 2 respectively represent the evolution of FPS and the memory usage across
the different strategies.

Table 1. Performance metrics accross optimization strategies

Strategy SkRate Resol MxQSize NbFrames Time(s) FPS C.Mem(MB) PeakMem(MB)
Default - 1920x1080 - 705 163.27 4.32 201.67 220.08
IR - 640x480 - 705 102.11 6.90 175.22 187.41
IR - 320x240 - 705 75.25 9.37 66.65 79.01
FSkip 2 640x480 - 353 64.96 5.43 88.46 100.90
FSkip 5 640x480 - 141 13.76 10.24 36.84 49.28
MSESkip 5 640x480 - 141 14.54 9.70 37.46 53.12
ParlProcess 2 640x480 - 352 33.74 10.43 89.44 104.86
ParlProcess 5 640x480 - 141 14.85 9.49 47.39 62.81
Threading 2 640x480 - 352 46.72 7.53 89.05 104.72
Q.M. 5 640x480 10 141 14.23 9.91 48.07 62.81
Q.M. 5 640x480 20 141 13.86 10.17 48.07 64.07
M.M 5 640x480 10 141 16.18 8.71 91.80 108.64
M.M 5 640x480 20 141 14.95 9.43 81.45 108.33
Buff. 5 640x480 10 141 15.54 9.07 81.74 108.32
Buff 5 640x480 20 141 15.08 9.35 81.45 108.31

4 https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt
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Fig. 1. FPS evolution across optimization steps.

Fig. 2. Memory usage evolution across optimization steps.
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Image resizing significantly increased FPS and reduced memory usage. Re-
ducing the resolution from 1920x1080 to 640x480 improved FPS from 4.32 to
6.90, and further reducing to 320x240 increased FPS to 9.37, proving highly ef-
fective for improving processing speed in resource-constrained environments. In
practice, the optimal resolution may vary depending on the specific application
and the complexity of the scenes being analyzed.

Frame skipping showed notable improvements in FPS and memory usage.
With a skip rate of 5, the FPS increased to 10.24 for 640x480 resolution. MSE-
based (same for other technics) frame skipping provided a balance between pro-
cessing efficiency and accuracy of object detection and tracking. Using a thresh-
old of 500 with a skip rate of 5 yielded an FPS of 9.70, while higher thresholds
resulted in slightly better FPS. This method is especially useful for detecting
significant changes in video frames, maintaining a balance between performance
and accuracy where not every frame needs to be processed.

Parallel processing improved FPS by distributing the computational load
across multiple threads. With 2 executors, the FPS increased to 10.43 for 640x480
resolution. However, increasing the number of executors to 4 resulted in a slight
decrease in FPS due to the overhead of managing more threads, indicating a
balance must be struck in thread management.

Threading allowed for concurrent processing of multiple video streams, en-
hancing FPS. With 2 threads, the FPS was 7.53 for 640x480 resolution. This
strategy is effective for systems that need to handle multiple video streams si-
multaneously, ensuring improved throughput and responsiveness. Balancing the
number of threads is important, to avoid overhead associated with managing too
many threads.

Queue management using buffers helped smooth out fluctuations in process-
ing time, leading to more consistent performance. Increasing the max queue size
to 20 improved FPS to 10.17 for 640x480 resolution. This approach is benefi-
cial for managing data flow and reducing latency, ensuring a steady stream of
frames for processing. It is important to balance the maximum queue size to
avoid excessive memory usage while maintaining low latency.

Memory management with tracemalloc provided valuable insights into mem-
ory usage and helped optimize system performance. The results showed that
increasing the max queue size reduced memory usage variability and improved
FPS. This strategy is essential for detecting memory leaks and ensuring efficient
memory usage, contributing to overall system stability. However, it is essential to
balance memory usage and processing efficiency to ensure optimal performance.

Buffering smoothed out variations in processing time, leading to consistent
FPS and reduced memory usage variability. With a max buffer size of 20, the
FPS improved to 9.35 for 640x480 resolution. This technique is effective for
maintaining a steady data flow and preventing bottlenecks, ensuring continuous
and efficient processing of video streams. The optimal buffer size depends on
the specific hardware configuration and the nature of the video stream being
analyzed.
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5 Conclusion

This paper has addressed the critical need for optimization strategies in real-
time video analytics, particularly in resource-constrained environments such as
developing countries and edge systems. Through the introduction and evalua-
tion of several techniques—including image resizing, frame skipping, MSE-based
frame skipping, parallel processing, threading, queue management, memory man-
agement with tracemalloc, and buffering—we have demonstrated significant im-
provements in processing efficiency and memory usage. Our experimental results
show that these strategies collectively enhance frames per second (FPS) and re-
duce memory consumption, ensuring that real-time video analytics systems can
operate effectively even with limited computational resources.

By balancing processing efficiency and accuracy, the proposed strategies make
advanced AI-driven video analysis feasible in environments with restricted re-
sources. This not only facilitates real-time monitoring and alert systems but also
broadens the accessibility of sophisticated video analytics technologies to regions
and applications where computational capabilities are limited. Additionally, this
paper provides a practical guide for implementing these optimization techniques,
offering valuable insights and actionable steps for practitioners and researchers
aiming to optimize their video analytics systems.
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